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Construction of Elliptic Curves with Large Rank 
By Thomas J. Kretschmer 

Abstract. We describe an algorithm for finding elliptic curves over Q with large rank and 
nontrivial torsion group. In particular, an example of a curve of rank exactly 10 with a point 
of order 2 is given. This method seems to suggest that the rank may be large independently of 
the torsion group. 

1. Introduction. Let K be an algebraic number field and E be an elliptic curve 
defined over K. Then the set of the K-rational points of E forms an Abelian group 
and we have the famous theorem of Mordell-Weil stating that 

E(K) Etorsion(K) CD Zr (r E No). 
The number r is called the rank of E over K. 

The rank is a major topic of research since many years. One question related to it 
is whether there are elliptic curves of arbitrarily large rank over a fixed algebraic 
number field. Because of the difficulty of this problem, one restricts oneself to the 
case K = Q. In 1954 Neron [7] succeeded in proving that there exist elliptic curves 
over Q with r > 11, but his proof does not yield any explicit examples. The 
following table gives a survey of examples that have been found up to now. 

1948 Wiman [11] r > 4 
1974 Penney & Pomerance [8] r > 6 
1975 Penney & Pomerance [9] r > 7 
1977 Grunewald & Zimmert [3] r > 8 
1977 Brumer & Kramer [1] r > 9 
1979 Nakata [6] r > 9 
1982 Mestre [5] r > 12 

The exact rank of these curves is not known, except that Mestre's example yields 
an elliptic curve of exact rank 12, provided the Birch and Swinnerton-Dyer conjec- 
ture, the Weil conjecture and the Riemann conjecture generalized to L-series of 
elliptic curves are true. All the curves with r > 8 have a trivial torsion group. In this 
paper, an example with r = 10 and nontrivial torsion group is given. 

2. Results of Tate. In the following section, the main results of Tate from [10] are 
presented. Let K be an algebraic number field and E an elliptic curve over K with a 
K-rational point of order 2. E can be given the form: 

E: y2 = X3 + aX2 + bX (a, b K-integers), 
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where the discriminant A = b2(a 2- 4b) is not equal to 0. Write F for E(K) and 
define a homomorphism 

a: F K*- * 2 

by 

a(O):= 1 

a((0,0)):= bK*2 

a((x, y)):= xK*2 for x # 0. 

Furthermore, define an elliptic curve E by 

E:y2 = X3 + X2 + bX, where a-:= -2a, b:= a2 - 4b. 

Then E is 2-isogeneous to E. 1 and a are defined analogously to F and a. In this 
situation, Tate has proved the fundamental 

THEOREM 1. 

2r =I aI` Ia- 
4 

where r is the rank of E over K and JAI denotes the cardinality of a set A. 

Hence, the exact rank of E can be calculated if those values modulo squares are 
known that can occur as x-coordinates of the points on E (resp. E). 

For K = Q, the following theorem yields a great deal of information about aF. 

THEOREM 2. If K = Q, then aF = {Q*2, bQ*2} U {b1Q*21 b divides b, i.e., 
b = b1b2 and 

Z2 = b=bX4 + aX2y2 + b2Y4 

is solvable in Z with XY # 0}. 

Unfortunately, the solvability of equation (*) is not easy to decide. Nevertheless, 
Theorem 2 may be exploited to find elliptic curves of a large rank. The idea is to 
choose first some b composed of many distinct prime factors, and then to find a 
suitable a such that many of the equations (*) will be solvable. This was done in this 
way by Penney and Pomerance [8], [9]. Here, a significant improvement on the 
method of Penney and Pomerance will be achieved and applied to obtain some 
high-ranking curves, the exact rank of which can be determined. 

For the rest of this paper we take K = Q. 
We now give two applications of the above theorems. 

PROPOSITION 1. Let p e P, i.e., p a prime, such that p 5 mod 8, and let the 
elliptic curve E be given by 

E: y2 XI X3+P2X. 

Then (i) rank E(Q) = 0, (ii) Etor(Q) = Z/2Z. 
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PROPOSITION 2. Let a2 - 4b be squarefree. Then the torsion group T of E is 

isomorphic to one of the following groups: 

Z/2Z, Z/2Z X Z/2Z, Z/4Z, Z/6Z or Z/2Z X Z/4Z. 

More precisely: 
(i) a2- 4b = 1. 

(a) (1 - a)/2 is a square in N. Then T _ Z/2Z X Z/4Z. 
(b) (1 - a)/2 is not a square in N. Then T _ Z/2Z X Z/2Z. 

(ii) a2- 4b # 1. 
(a) If b1 + a + b2 # 1 for all factorizations b = b1b2 of b, then T Z/2Z. 
(b) There is a divisor b1 of b such that b1 + a + b2 = 1. 

(a) If b1 = b2, then T_ Z/4Z. 
(,B) If b1 # b2, then T is isomorphic to Z/6Z, provided that bi = 

4b/(4b - (a - 1)(a + 3)) for i = 1 or 2. Otherwise, T is isomorphic 
to Z/2Z. 

Proofs. The proofs can be found in [4]. 

3. Local Considerations. To get some insight into the solvability of the equations 
(*) appearing in Theorem 2, we consider them locally, that is to say, we investigate 
the solvability of 

y2 = g(X):= b1X4 + aX2 + b2 with A(g):= 2433b(a2- 4b)2 

in the p-adic completions Qp of Q (p E P), A(g) being the discriminant of g. 
The following three lemmas are useful in most cases: 

LEMMA 1. If p E P with p + A(g), then y2 = g(X) is solvable in Qp. 

LEMMA 2. Letp e P with ,u:= vp(a2- 4b)> 1 andp + 6b. Then Y2 =g(X) is 

solvable in Qp if and only if 
(i) b1 (resp. b2) is a quadratic residue mod p, or 

(ii) IL is even and 

{a f 1l ifp =-5,7mod8, 
(P) = -1 if p 1,3mod8. 

LEMMA 3. Let p E P be such that p l b but p + 6a. Then y2 = g( X) is solvable in Qp 
if and only if 

(i) p + gcd(bl, b2), or 
(ii) p I gcd(bl, b2) and ((a) = 1 or vp(b1) or vp(b2) is even). 

Proofs. Lemma 1 is clear. Lemma 2 is easy to prove if one uses that 

y2 = bJX4 + ax2 + b2 

is equivalent to 

(2b1x2 + a)2 a2 - 4b + 4b1y2 for x, y E Qp. 

The proof of Lemma 3 involves a standard calculation in p-adic numbers. The 
details of all this can be found in [4]. 
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Of course, these lemmas cannot always decide the global solvability, but they are a 
valuable tool in recognizing an equation to be not solvable. Furthermore, we can 
easily use them to prove (see [4]): 

THEOREM 3. Let a, b E Z be such that 
(1) b = 2e2 * 3e3* -p -n with n, e2, e3 E N, P \ {2,3} and e2 > 7, 

e3> 3, pi # pj for i]j (i, jE {1,.. ., n}). 
(2) a-1 mod 24. 
(3) pi a for all i E {1,.., n}. 
(4) a2 - 4b E P. 

Then 

y2= g(X) = b1X4 + aX2 + b2 (b = b1b2) 

is everywhere locally solvable for all divisors b1 of b. 

4. Construction. For the following, a2 - 4b must not be a square. Let A:= {b} 
U { b1 I blb2 = b, bi E Z and b1 + a + b2 is an integral square} and B be the group 
generated byA _ Q*2 in Q*/Q*2. Then IBI = 2S for some integer s, and the rank of 
E is not less than s - 1, as outlined in [8]. All we have to do now in order to find 
elliptic curves with large rank is to find a and b such that s is large. Of course, there 
are infinitely many choices for a and b, and so we impose some conditions on a and 
b: 

(i) b satisfies condition (1) of Theorem 3 with large n. n should be greater than 
or equal to r - 2, if we want to find curves of rank > r. 

(ii) a satisfies (2) of Theorem 3. 
(iii) 0 < a < dig, where d = 10 or so, as suggested by experience. 
(iv) For some small primes p, choose a and b mod p such that Np:= IE(FP)I is 

maximal. This idea may be found already in the article [2] of Birch and Swinnerton- 
Dyer on page 7 and, with a more solid foundation, in the article of Mestre [5]. 

When we have made some choice for b according to (i) and (iv), we let the 
computer find the best values for a (i.e., the values for which A is maximal) that 
satisfy (ii), (iii) and (iv). We now describe an algorithm which efficiently performs 
this task. 

Conditions (ii) and (iv) (for a) can be summarized by 

a-cl, ..., Ck mod c, 

where c is the product of 24 and the chosen small primes p of (iv), and 0 < cl < c2 
< ... < ck < c, ci E No. In the sequel, we consider only one of the ci: 

a- a:=ci modc. 

The algorithm then processes the ci's one after another. Using (iii), we can 
reformulate the problem: 

If ak:= ao + kc (O < k < kmaIk e No, kmaxdepending on d of (iii) and on c) 
and M:= { b1 + b2 I b1b2 = b, bi E Z}, the algorithm has to determine for which 
indices k the set ak + M contains the most squares. 
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The following algorithm for solving this problem works substantially faster than 
the one used by Penney and Pomerance.* 

ALGORITHM. 

(0) Associate with each k (O < k < km.) a counter Zk which at the end contains 
the number of squares in the set ak + M. 

(1) Set all counters Zk to 0. 
(2) For each divisor of b consider the sequence ak b1 + b2 + ak (0 < k < kma") 

(without loss of generality do > 0), determine all indices kj,..., ke(bl) (e(bl) 
E NO) such that ak, is a square (1 < i < e(b1)), and increment the associated 
counters by 1. 

(3) Print all the ak for which Zk is large. 

The disadvantage of this algorithm is step (0), because the counters are repre- 
sented by an array of integers, the length of which is limited by the memory of the 
computer (this means, e.g., on our Siemens 7.561 that kmst < 500,000). We will now 
explain how to execute in an efficient manner step (2), which at first sight looks 
relatively unfeasible. 

Let x, ..., x5 E Z be the solutions of 

x2 = ao mod c, 

where the xi are chosen from a fixed full system of residues mod c. The xi can be 
computed fast, if at the very beginning of the program (i.e., after the input of a, b, c) 
a table of square roots mod c (or mod some factors of c, if c is too large) is 
computed and stored. 

Defineyi E No (1 < i < s)by 

yi is minimal such that 
(i) yi xi mod c, 
(i)yi2 > i aO. 

Then we have 
ak is a square ** i E {, . s}, I E- No: ak = (i Ic 
Proof. 

"66" trivial, but one remark: i and I given, there indeed exists a k E No such 
that "k = (Yi + Ic)2, because (yi + Ic)2 > yi2 > ao and (yi + IC)2 = yi2 
X2 -a0modc. 

" If ak = e2 for some e e N then e2 Lk Qo mod c. Hence, there exists 
an i E {1, . . ., s } such that e - xi mod c. Because e2 > a, and because 
of the definition of yi, there exists 1 E No such that e = yi + ic. 

Define now kl i E No by 

a k,= (Pi+ IC)2 (I1= No ~ < i <s) 

Then the indices looked for in step (2) of the algorithm are given by 

killl E No, 1 < i < s} n f{x e Nojx < kme}. 

The curves of [9, Chapter 2], were found in 5 seconds, whereas 10 minutes were needed before. 
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Now there remains the question of how to determine the k,,i. To settle this, we fix an 
i E {1, s } and abbreviate k1 := k1, i. First compute k0 and, to this end, compute 
yi: 

Let yi = xi + lic. Without loss of generality, the full system of residues may be 
chosen so that always li E No. According to the definition of yi, li is minimal such 
that (xi + lic)2 > aO. Therefore, 

1i= entier( X i) 

By this formula, li, and consequently yi, can be computed. We get for k0: 

2 
a0 ko=P 

- ao 
C 

To compute k, (1 > 0), we define 

di:= kl+1 - ki = 2yi + (21 + 1)c. 

Then d+ -di = 2c. 
Summarizing: Compute ko as before and set do:= 2yi + c. Then, 

=+1 =d+ di (1 E NO) 
d1+1 =di +2c (lN) 

This shows that the computation of k1+1 from k, requires only two additions and is 
therefore very fast. Repeat all this for each i E {1, ... ., s}. 

5. Examples. Using an implementation of the above algorithm on the Siemens 
7.561, running the SAC2/Aldes system, the following curve was found: 

THEOREM 4. Let a = 12,273,038,545 and b = 210 . 36 . 17 * 19 * 23 * 29 * 31 * 37 
41 * 43 * 53 = 17,236,434,803,911,308,288. Then the elliptic curve E: y2 = X3 + aX2 
+ bX has rank 10 over Q. 

Proof. E is given by E: Y2 = X3 + a-X2 + bX, where a- := -2a = -24,546,077,090 
and b := a2 - 4b = 472 2 53 * q = 81,681,735,911,410,483,873, with q:= 
697,675,341,112,349 prime. Define 

r1 = log21 aJ - 1, r2:= log2 "I I- 1. 

We will show that r1 = 10 and r2 = 0. Theorem 1 then implies that r = r, + r2 = 10. 
As to rl, we know from the computer output that B = (2 - 41,3 - 41,17,19 - 41, 
23 - 41,29,31 - 41,37,43,53, _1)Q*2. Therefore, r, > 10. Assuming r, = 11, we 
would have B = alT, and y2 = 41X4 + aX2 + b/41 would be solvable in Qq* 
Because (1) = -1, this is a contradiction to Lemma 2. 

With-regard to r2, we show that a = {Q*2, bQ*2}. Let b aQ*2 E a1 with 
b1b2 = b. 
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(i) bh < 0 implies that 

(*) y2 = b1X4 + a-X2 + 

is not solvable in R, a contradiction to blQ*2 E air. 
(ii) b1 > 0. By using Lemma 2, one can show that equation (*) is not solvable in 

Q19 or inQ29. 
We now list the x-coordinates of 10 independent points defined over Z. The 

computer output for this example yields 92 integer points on E. 

xl = 36. 17 - 43 53 

x2 =24 35 *19 *43 

X3= 2* 34. 29* 31 37 

X4= 27 35 17 19* 23 

x5 =2 35 *29 *31 *41 

x6 = 26 35 *19 *43 *53 

X7= 26. 35 17 23 43 

x8= 25 35. 17* 19 * 41 

x= 2=2* 34. 17 * 23 * 29 * 53 

x10= -25* 35. 17 - 23 - 31 - 37 

The following tables contain further examples. 

TABLE 1 

r b a 
1 2 7 
2 2733 169 
3 2733 7 997 
4 2734 .7 13 6,865 
5 28 33 7 .11 .17 17,905 
6 2 3 13 23 29 * 31 154,465 
7 28 38 7 11 '13 17 19 3,065,905 
8 2734*7 11 29 31 *41 47 16,835,185 
9 29 36 . 7 11 13 .17 19 23 59 76,171,105 

Here a2 _ 4b is always a prime. This fact leads to the following 

CONJECTURE. Let n be a positive integer. Then there exists a set S = { Pi..., n + 
of primes and an elliptic curve E defined over Q such that 

(i) rank E(Q) = n, 
(ii) Etorsion(Q) r ( o) u 

(iii) E has good reduction outside S. 
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TABLE 2 

r) b a 
7 27 34_17 *19 23 29 31 41 49,555,705 
7 27 33-17 *19 * 23 29 * 31 43 25,045,585 
7 28 34 17 .19 . 23 31 37 * 41 14,853,985 
7 28 347 - 11 13 - 19 . 31 - 47 6,796,345 
7 28 33.7 11 13 * 19 * 43 -47 39,554,665 
8 29 357 11 19 23 41 - 47 95,560,825 
8 28 34 13 . 19 . 23 * 29 37 47 53 104,228,785 
8 29 *3 19 * 23 *31 37 47 59 61 203,231,185 
8 28 34.19 . 23 31 43 * 47 59 61 1,495,599,625 
8 28 33 19 . 23 41 * 43 * 47 53 -59 269,152,585 
8 27 -3419 23 * 41 * 43 * 47 *53 61 173,919,265 
8 28 33 19 * 29 * 37 . 43 * 47 53 59 217,040,785 
8 28 34 19 . 29 * 41 43 * 47 53 61 2,178,863,185 
8 29 34*23 29 *31 *37 *47 *53 61 853,117,945 
8 29 3423 29 * 31 * 43 47 *53 59 968,820,385 
8 28 33 23 29 37 43 *53 .59 .61 219,001,225 
8 28 33 23 37 41 * 43 * 47 .59 61 314,984,905 
8 28 33 29 *31 .37 41 *43 * 47 53 945,830,785 
8 29 3431 37 * 41 43 *47 *53 59 1,478,670,625 
9 29 34 19 23 *29 31 41 *53 61 397,532,305 
9 212 36 7 11 13 17 *19 *23 *29 * 31 * 37 3,565,004,785 
9 210 38 7 11 13 17 19 * 23 *29 * 31 * 37 3,104,006,785 

9 210 38 7 11 13 * 17 *19 23 29 * 31 * 37 6,689,571,985 
9 210 38 7 .. 11 13 * 17 19 *23 29 31 37 7,762,474,585 
9 29 377 11 13 * 17 * 19 23 29 * 47 * 101 3,462,137,425 
9 29 357 11 13 17 *19 * 23 *29*31 *73 539,827,945 
9 28 35.7 11 13 17 .19 * 23 * 67 * 73 .79 3,240,270,025 
9 29 *3 7 11 13 *17 *19 23 *29 * 67 * 79 1,882,513,345 
9 29 36.7 11 13 .17 .19 . 23 .29.31 . 71 2,015,170,225 
9 29 36.7 11 13 -17* 19 23 *29*31 *71 1,912,672,825 
9 210 36 7 13 . 17 . 19 * 23 * 29 * 31 * 37 * 59 2,305,197,625 
9 29 36.7 13 . 17 19 . 23 29 - 31 37 43 1,418,295,385 
9 28 35.7 13 17 . 19 23 29 . 31 37 . 53 1,021,882,585 
9 29 *3 11 * 13 * 17 * 19 23 -29 31 * 37 * 43 992,038,825 
9 28 367 . 11 . 13 17. 19 * 23 29 31 * 37 * 41 2,792,554,705 
9 28 35.7 11 13 . 17 19 23 . 29 .31 . 37 73 2,921,371,705 
9 29 347 11 13 * 17 19 * 23 * 29 31 - 37 - 67 2,583,197,545 
9 28 35 17 . 19 23 . 29 31 . 37 . 43 . 47 . 53 . 61 30,661,587,025 
9 29 3 17 * 19 * 23 - 29 * 31 37 43 * 47 53 59 21,052,338,745 

10 210 36 17 . 19 . 23 29 . 31 37 . 41 43 . 53 12,273,038,545 

10 29 34*17 * 19 * 23 29 31 37 * 43 * 47 * 53 59 18,926,510,425 

This table is an excerpt from what the computer found during my work. 
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